PRELMINARY STORMWATER CONTROL PLAN for THE LEUNG PROPERTY CONTRA COSTA COUNTY

October 11, 2024

Carlson, Barbee & Gibson, Inc.

Justin Joseph Project Manager 2633 Camino Ramon, Suite 350 San Ramon, California 94583

prepared by:

Balance Hydrologics, Inc. 800 Bancroft Way, Suite 101 Berkeley, California 94710

TABLE OF CONTENTS

II. Se	Setting					
II.A	II.A. Project Location and Description					
II.I	В.	Existing Site Features and Conditions				
II.0	С.	Opportunities and Constraints for Stormwater Control				
III. Lo	ow In	npact Development Design Strategies	4			
III.	III.A. Optimization of Site Layout					
		III.A.1. Limitation of development envelope	4			
		III.A 2. Preservation of natural drainage features	4			
		III.A.3. Setbacks from creeks, wetlands, and riparian habitats	4			
		III.A.4. Minimization of imperviousness	4			
		III.A.5. Use of drainage as a design element	4			
III.	I.B.	Use of Permeable Pavements	4			
III.	I.C.	Dispersal of Runoff to Pervious Areas	4			
III.	I.D.	Bioretention or other Integrated Management Practices	5			
IV. Do	ocum	nentation of Drainage Design	6			
IV.	<i>ч</i> .А.	Descriptions of each Drainage Management Area	6			
		IV.A.1. Table of Drainage Management Areas	6			
		IV.A.2. Drainage Management Area Descriptions	7			
IV.	И.В.	7				
		IV.B.1. Areas Draining to Non-LID Treatment				
		["Special Projects" only—See Table 3-8, p. 55]	7			
IV.	<i>ч</i> .С.	Tabulation and Sizing Calculations	7			
V. So	ource	e Control Measures				
V.A	А.	Site activities and potential sources of pollutants				
V.I	В.	Source Control Table				
V.(C.	Features, Materials, and Methods of Construction of Source Control BMPs	8			
VI. Sto	torm	water Facility Maintenance	9			
VI.	[.A.	Ownership and Responsibility for Maintenance in Perpetuity	9			
VI.	[.B.	Summary of Maintenance Requirements for Each Stormwater Facility	9			
VII. Co	onstr	ruction Plan C.3 Checklist				
VIII. Ce	ertific	cations				

Tables

Table 1. Project Data	1
Table 2. Drainage Management Areas	6
Table 3. Sources and Source Control Measures	8
Table 4. Construction Plan C.3 Checklist	10

Figures

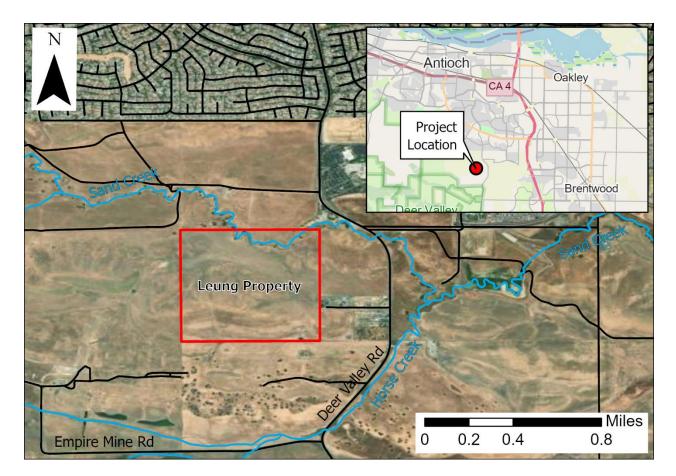
Vicinity Map2

Appendix

- A. Stormwater Control Plan Exhibit
- B. IMP Sizing Calculator Output
- C. BAHM Project Report
- D. Map of DMAs

This Stormwater Control Plan was prepared using the template dated March 2024.

I. PROJECT DATA


Table 1.Project Data

Project Name/Number	Leung Property
Application Submittal Date	October, 2024
Project Location	0.50 miles southwest of the intersection of Deer Creek Road and Sand Creek Road, City of Antioch
Name of Developer	Richland Communities
Project Phase No.	TBD
Project Type and Description	278 single family detached lots, 156 townhome units, trail system, open space areas
Project Watershed	Sand Creek
Total Project Site Area (acres)	159.90
Total Area of Land Disturbed (acres)	62.45
Total New Impervious Surface Area (sq. ft.)	1,495,714
Total Replaced Impervious Surface Area	0
Total Pre-Project Impervious Surface Area	0
Total Post-Project Impervious Surface Area	1,495,714
50% Rule	Does not apply (no pre-project impervious cover)
Project Density	4 units/acre
Applicable Special Project Categories [Complete even if all treatment is LID]	None
Percent LID and non-LID treatment	100% LID
HM Compliance	Applies

II. SETTING

II.A. Project Location and Description

The project site is located in the City of Antioch in Contra Costa County (see **Figure 1** for a vicinity map). The entire site is located within the boundaries of Future Urban Area 1 (FUA-1). The proposed project will include 279 residential lots of which 248 will be single family detached lots and 31 will be townhomes. The Project also includes open space areas and an associated trail system.

Figure 1. Project vicinity map.

II.B. Existing Site Features and Conditions

The project site covers a total area of 160 acres with land use consisting of open space that has traditionally been used for grazing. The portions of the overall project area that are proposed for development are located on relatively level land that slopes generally parallel to Sand Creek, bounded by hills to the south and west. Sand Creek, which forms the Northern boundary, has a deeply incised channel and is hydrologically disconnected from the project site. Land elevations range between 217 to 282 feet (NAVD88)¹.

Under current conditions, the site receives runoff from the surrounding hillslopes as well as an area to the southwest routed through a former stock pond. The site drains to the east toward Horse Creek, immediately upstream of its confluence with Sand Creek. A roughly 50-foot buffer area around the

¹ Unless otherwise noted, all elevations reference the North American Vertical Datum of 1988 (NAVD88).

Sand Creek channel is mapped as Zone A by the Federal Emergency Management Agency, indicating a 1% annual chance of flooding.

The climate characteristics of the site reflect the Mediterranean climate of central coastal regions of California. This climate regime is characterized by cool, wet winters and hot, dry summers. The lower elevation areas in eastern Contra Costa County lie within the rain shadow of the coastal mountain ranges that remove much of the moisture from incoming storm systems. The Mean Seasonal Isohyets Map prepared by Contra Costa County indicates that the mean annual precipitation at the site is on the order of 14.3 inches per year. Although the average rainfall is quite low, the site does experience the wide range in annual precipitation that accompany drought years and wet years such as those related to the El Niño Southern Oscillation (ENSO). For example, the minimum annual precipitation recorded at the nearby Antioch Pumping Plant was 5.6 inches (in Water Year 1976) and the maximum was 27.1 inches (in Water Year 1983).

Annual temperature patterns are typical of interior areas of the state, although somewhat tempered by cooling breezes originating at sea and in the San Francisco Bay system. Evaporation rates are quite high in summer, exceeding rainfall in all but the wettest winter months. Mean annual pan evaporation is likely on the order of 71 inches, or over five times mean annual precipitation, based on the record from the Antioch Pumping Plant (1955-1978).

The underlying soils are identified as Altamont clay, Altamont-Fontana complex, Capay clay, Rincon clay loam, and Briones loamy sand in mapping prepared by the Natural Resources Conservation Service. Approximately 99% of the project area is classified in Hydrologic Soil Group (HSG)² C and 1% in HSG A. All areas to be developed are located classified in HSG C.

II.C. Opportunities and Constraints for Stormwater Control

The project presents several important constraints with respect to stormwater management, including the following:

- *Low soil permeability.* The soils underlying the project site are almost exclusively designated as HSG C, indicating very low infiltration potential. This significantly limits those integrated management practices (IMPs) that rely on direct infiltration of stormwater runoff as a water-quality control measure.
- Off-site western watershed. A 178.0-acre section of land to the west of the site is not within the Project boundary but drains to the site through a former stock pond. The Project will need to provide drainage infrastructure (but not C.3 treatment) for this additional off-site watershed area.
- *Rerouted flow.* Under current conditions, runoff from the site and off-site western watershed flow east toward Horse Creek as sheet flow. This runoff will be rerouted to a new outfall into Sand Creek in the northeast corner of the site.
- *No existing creek outfalls.* The outfall from IMP 1 will require a new outfall into Sand Creek, with an associated limited amount of hardened surfaces to be added to the creek.

² The NRCS hydrologic soil groups (HSGs) divide all soil types into four categories based on the potential to produce runoff. Type A soils have the lowest runoff potential and typically have high infiltration rates. Type D soils have the highest runoff potential and typically have low infiltration rates and/or are shallow.

• *Wetland areas.* Some areas of seasonal wetlands have been identified in the west and southeast parts of the site. This requires configuring project and associated stormwater management infrastructure to avoid impacts to the maximum extent practicable.

These constraints are offset by several notable opportunities that include:

- *Open space.* The roughly 97.5 acres of open space throughout the Project will provide wildlife habitat areas and a wildlife corridor, while significantly limiting the total amount of new impervious cover that will be constructed.
- *Sufficient hydraulic head.* The relief at the site allows stormwater runoff from the developed areas to be routed to, through, and away from treatment controls without pumping.
- *Mitigate flows to Deer Valley Road crossing.* Under current conditions, runoff from the site flows to an off-site ditch which crosses Deer Valley Road at a culvert before entering Horse Creek. The proposed rerouting of flow from the site to Sand Creek would minimize impacts to this aging culvert infrastructure and the downslope community along Deer Hill Road.
- Reduce peak flow to Upper Sand Creek Basin. Under current conditions, unmitigated runoff from the site enters Horse Creek immediately upstream of its confluence with Sand Creek (approximately 924 feet upstream of Upper Sand Creek Basin). The proposed rerouting of flow from the site to Sand Creek (and associated IMP 1) has to the potential to modulate the timing and magnitude of peak flows to Upper Sand Creek Basin.

III. LOW IMPACT DEVELOPMENT DESIGN STRATEGIES

III.A. Optimization of Site Layout

- *III.A.1. Limitation of development envelope.* The site design limits the development envelope in a manner that concentrates residential lots in the smallest practicable area. Doing so provides space for construction of stormwater detention basins.
- III.A.2. Setbacks from creeks, wetlands, and riparian habitats. The project site plan avoids encroachment of developed areas on Sand Creek and existing seasonal wetlands.
- III.A.3. Minimization of imperviousness. The site design limits the development envelope in a manner that concentrates residential lots in the smallest practicable area. The aforementioned provision of areas for stormwater treatment basins and seasonal wetlands results in an overall impervious cover of approximately 21% for the site as a whole.
- III.A.4. Use of drainage as a design element. IMP 1 will be located at the lower elevations of the project site to facilitate gravity flow and will be designed as aesthetic features for the neighboring development, with the facilities designed to integrate into the surrounding open space using curvilinear forms and appropriate landscaping.

III.B. Use of Permeable Pavements

The project does not propose the use of permeable pavers given the very low infiltration capacity of the underlying soils.

III.C. Dispersal of Runoff to Pervious Areas

The compact configuration of the site plan and goal preserving and enhancing existing wetland habitats limits opportunities for dispersal of runoff to pervious areas. That said, the majority of the site will be self-treating from a stormwater management perspective.

III.D. Bioretention or other Integrated Management Practices

To meet the requirements of the pertinent stormwater regulations, the Project will construct an IMP that provides for full bioretention treatment of all on-site runoff. To meet this objective, the Project is divided into six main drainage management areas (DMAs) as shown in **Appendix D**. Within each on-site DMA, a gravity-flow storm drain system will collect stormwater and covey it to the IMP 1 feature which is specifically sized for the pertinent amount of impervious and pervious cover. The IMP 1 utilizes the "cistern + bioretention" sizing criteria taken directly from the Stormwater C.3 Guidebook (9th edition) and verified using the Bay Area Hydrology Model (BAHM) as specified in the Stormwater C.3 Guidebook (9th edition). The term "cistern" in this case should be recognized as signifying a separate storage volume, in the form of a traditional open basin, which is used to meter flow out to a separate bioretention area in a controlled manner.

The location of the project site in the middle reaches of the Sand Creek watershed also calls for strict compliance with the hydrograph modification plan (HMP) requirements established in Contra Costa County. Full HMP compliance is achieved across the board by sizing IMP 1 per calculations using the Clean Water Program's IMP Calculator Version 1.3.1.0 and simulations using BAHM (see **Appendices B** and **C**) for treatment + flow control. Although the Clean Water Program has released a newer version of the IMP Calculator (Version 1.4), the cistern + bioretention IMP type is not available; therefore we used the older Version 1.3.1.0 for initial sizing and verified that the facility is HMP compliant using BAHM.

IMP 1 is designed with full capacity to achieve the traditional C.3 functions for water-quality remediation (through bioretention treatment) and hydromodification management. With the planned addition of debris screens on the IMP outlets, the proposed facility will provide full compliance with the currently effective trash total maximum daily load (TMDL) requirements.

The Project will configure IMP 1 to provide mitigation for any potential increase in peak flow rates from storms larger than the 10-year event (smaller storms are mitigated by the flow control sizing included in the hydromodification control design). This functionality is provided for Contra Costa County Flood Control design storms up to the 100-year event by proper allowances for high-stage storage and appropriate sizing of the high-flow release structures in the facility. The associated modeling and results are discussed in **Appendix C**.

IV. DOCUMENTATION OF DRAINAGE DESIGN

IV.A. Descriptions of each Drainage Management Area

IV.A.1. Table of Drainage Management Areas

Table 2.Drainage Management Areas

DMA Name	Area (sq ft)	Surface Type / Description	DMA Type / Drains to
DMA 1	996,260	Roof, asphalt roadway, landscaping, hillslope	Drains to IMP 1
DMA 2	1,772,920	Roof, asphalt roadway, landscaping	Drains to IMP 1
DMA 3	1,668,850	Hillslope	Self-treating + drains to Sand Creek
DMA 4	7,751,870	Hillslope, open space	Self-treating + drains to Sand Creek
DMA 5	452,830	Hillslope, river channel	Self-treating + drains to Sand Creek
DMA 6	102,770	Hillslope	Drains to IMP 1

IV.A.2. Drainage Management Area Descriptions

See **Appendix A** for the Project's Stormwater Control Exhibit.

DMA 1, totaling 996,260 square feet (447,880 impervious), drains residential units and open space hillslope to IMP 1.

DMA 2, totaling 1,772,920 square feet (1,178,641 impervious), drains residential units to IMP 1.

DMA 3, totaling 1,668,850 square feet, self-treating, drains on-site open space hillslope to Sand Creek.

DMA 4, totaling 7,751,870 square feet, self-treating, drains off-site open space hillslope to Sand Creek.

DMA 5, totaling 452,830 square feet, self-treating, drains riparian corridor to Sand Creek.

DMA 6, totaling 102,770 square feet, drains open space hillslope to IMP 1.

IV.B. Integrated Management Practice Descriptions

The project will include one dual-bay detention and bioretention IMP (IMP 1) that will be constructed per the design guidelines for bioretention basins as presented in the C.3 Guidebook 9th edition.

IMP 1 will include the requisite 18 inches of specially formulated biosoil over a drain rock layer that includes underdrain pipes. Surface ponding depth will be a minimum of 6 inches before overflow grates for high flow conditions would be engaged.

IV.B.1. Areas Draining to Non-LID Treatment

There are no areas draining to Non-LID treatment.

IV.C. Tabulation and Sizing Calculations

Sizing calculations in the form of the IMP Calculator output report and BAHM output report are included as **Appendices B** and **C**, respectively.

V. SOURCE CONTROL MEASURES

V.A. Site activities and potential sources of pollutants

As a medium-low density residential development, the project can be expected to have a few notable sources of stormwater pollutants, primarily those associated with vehicle use and landscaping.

V.B. Source Control Table

Table 3.Source Controls

Potential source of runoff pollutants	Permanent source control BMPs	Operational source control BMPs
Parking / vehicle washing	Street sweeping and maintenance, particularly prior to first seasonal rains. Routing of all runoff to maintained treatment measures.	• Distribute stormwater pollution prevention information to new owners.
On-site storm drain inlets	All inlets will be marked with wording, " No Dumping! Drains to Delta " or similar.	 Inlet markings will be repainted or replaced as needed. Homeowner information will include a clause similar to "Residents shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains."
Interior floor drains	Interior floor drains will be plumbed to the sanitary sewer.	Drains will be inspected and maintained to prevent overflow.
Landscaping and outdoor pesticide use	minimize irrigation and runoff and	 Landscaping will be maintained using minimum pesticides. Integrated pest management information will be provided to new lessees.
Refuse areas	Dumpster areas will be covered and include signage with language similar to "Do not dump hazardous materials here".	Receptacles will be routinely inspected and repaired as needed to avoid leakage.
Fire sprinkler test water	Interior drainage will direct all fire sprinkler test water to the sanitary sewer.	Drains will be inspected and maintained to prevent overflow.

V.C. Features, Materials, and Methods of Construction of Source Control BMPs

There are no special features, materials, or methods of construction of note.

VI. STORMWATER FACILITY MAINTENANCE

VI.A. Ownership and Responsibility for Maintenance in Perpetuity

Source control measures associated with the residential development will be the responsibility of the HOA in all cases, subject to inspection and verification by staff of the HOA. Treatment control facilities will be owned by the HOA with routine maintenance carried out by the HOA, subject to inspection and verification by staff of the Contra Costa Public Works Department.

All funding for maintenance activities will be financed out of HOA fees collected by the HOA.

VI.B. Summary of Maintenance Requirements for Each Stormwater Facility

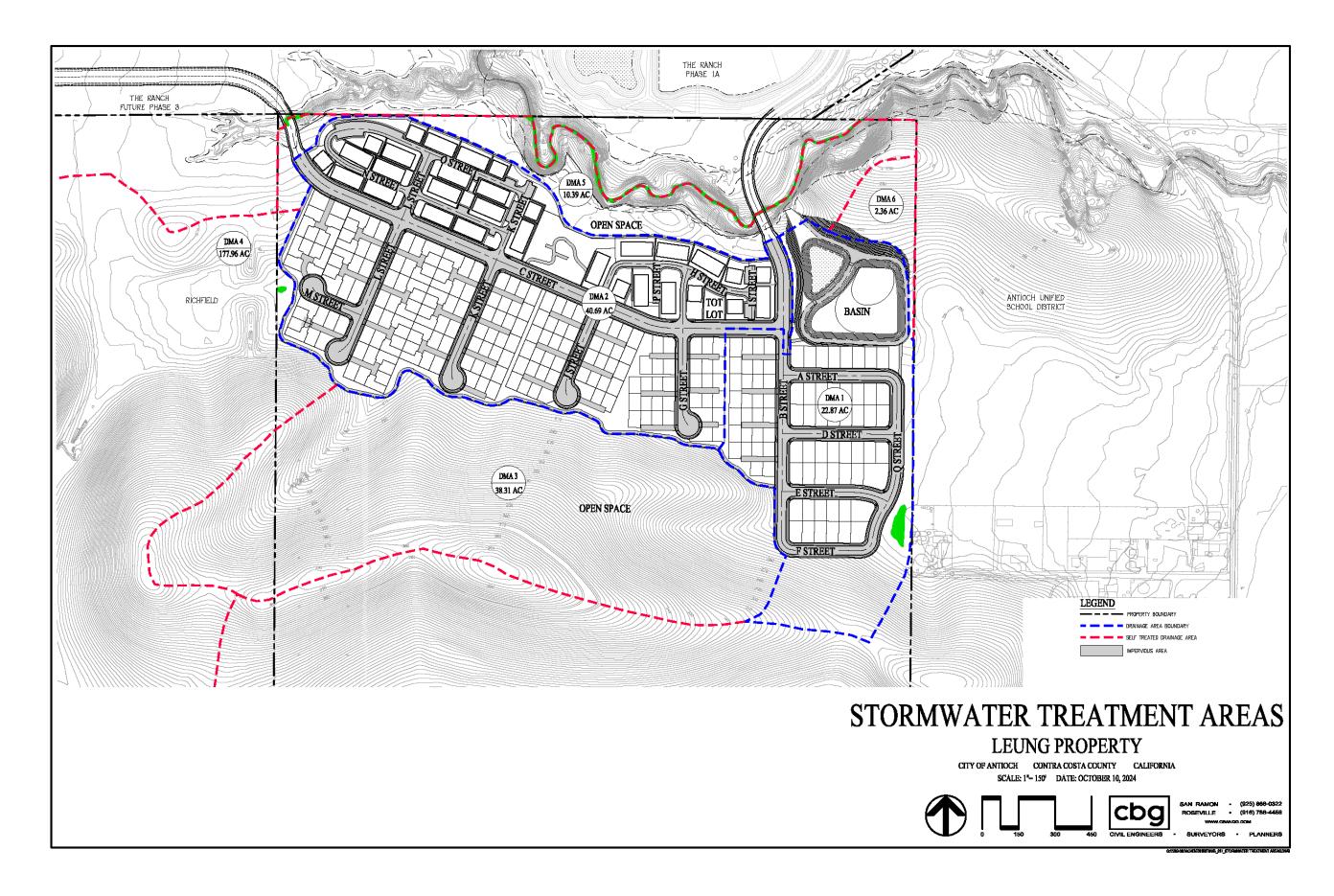
Operation and maintenance activities will be described, scheduled, and recorded per the Stormwater Facilities Operation and Maintenance Plan document that will be prepared and reviewed by Public Works Staff prior to final project approvals.

VII. CONSTRUCTION PLAN C.3 CHECKLIST

Table 4.Construction Plan C.3 Checklist

Stormwater Control Plan Page #	BMP Description	See Plan Sheet #s
7	Bioretention IMPs	TBD
8	8 Marked storm drain inlets 8 Interior floor drains to sanitary sewer	
8		
8	Covered trash receptacles	TBD
8	Fire sprinkler test water to sanitary sewer	TBD

VIII. CERTIFICATIONS


The selection, sizing, and preliminary design of stormwater treatment and other control measures in this plan meet the requirements of Regional Water Quality Control Board Order R2-2015-0049.

By

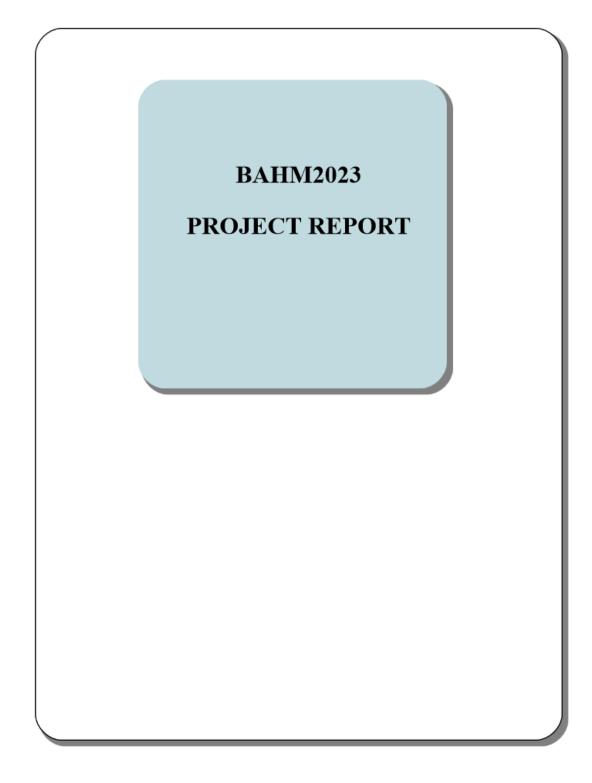
DRAFT

Edward D. Ballman, P.E.

Appendix A. Stormwater Control Plan Exhibit

Appendix B. IMP Sizing Calculator Output

Project Name: 224051 Leung Property IMP Sizing August 2024 Project Type: Treatment and Flow Control APN: N/A Drainage Area: 2,737,545 Mean Annual Precipitation: 14.3


IV. Areas Draining to IMPs

IMP Name: IMP1 IMP Type: Cistern + Bioretention Facility Soil Group: IMP1

DMA Name	Area (sq ft)	Post Project	DMA Runoff	DMA Area x				
		Surface Type	Factor	Runoff Factor	IMP Sizing			
DMA1	133,193	Conventional	1.00	133,193	IMP Sizing	Rain	Minimum	Proposed
Conventional		Roof			Factor	Adjustment	Area or	Area or
Roof				100.000		Factor	Volume	Volume
DMA1 Concrete	183,880	Concrete or	1.00	183,880				
or Asphalt	450.044	Asphalt	0.50	000.004				
DMA1 Landscape	458,041	Landscape	0.50	229,021				
DMA2	593,781	Conventional	1.00	593,781				
Conventional		Roof						
Roof								
DMA2 Concrete	584,860	Concrete or	1.00	584,860				
or Asphalt		Asphalt						
DMA2	783,789	Landscape	0.50	391,895				
Landscape			Tatal	0.440.000				
			Total	2,116,629				
				Area	0.013	0.610	16,794	17,600
				Volume	0.105	1.218	270,733	275,000
							Maximum Underdrain Flow (cfs)	2.37
							Orifice Diameter (in)	6.57

Report generated on 8/22/2024 12:00:00 AM by the Contra Costa Clean Water Program IMP Sizing Tool software (version 1.3.1.0).

Appendix C. BAHM Project Report

General Model Information

BAHM2023 Project Name: 224051 Leung BAHM September 2024 Site Name: Leung Property Site Address: Antioch City: Report Date: 10/4/2024 Gage: Brentwood Data Start: 1959/10/01 Data End: 2021/09/30 Timestep: Hourly Precip Scale: 1.040 Version Date: 2024/06/19

POC Thresholds

Low Flow Threshold for POC1:	10 Percent of the 2 Year
High Flow Threshold for POC1:	10 Year
Low Flow Threshold for POC2:	10 Percent of the 2 Year
High Flow Threshold for POC2:	10 Year

224051 Leung BAHM September 2024

10/4/2024 11:33:16 AM

Landuse Basin Data Pre-Project Land Use

Pre-project (DMAs 1, 2, Bypass:	<mark>6)</mark> No
GroundWater:	No
Pervious Land Use C D,Grass,Flat(0-5%) C D,Grass,Ste(10-20)	acre 63.572 2.359
Pervious Total	65.931
Impervious Land Use	acre
Impervious Total	0
Basin Total	65.931

Element Flow Componants: Surface Interflow Componant Flows To: POC 1 POC 1

Groundwater

224051 Leung BAHM September 2024

10/4/2024 11:33:17 AM

No
No
acre 38.311473
38.311473
acre
0
38.311473

Element Flow Componants: Surface Interflow Componant Flows To: POC 2 POC 2

Groundwater

224051 Leung BAHM September 2024

10/4/2024 11:33:17 AM

Mitigated Land Use

DMAs 1, 2, 6 Bypass:	No
GroundWater:	No
Pervious Land Use C D,Grass,Flat(0-5%) C D,Grass,Ste(10-20)	acre 25.603 2.359
Pervious Total	27.962
Impervious Land Use Roads,Flat(0-5%) Roof Area	acre 17.648 16.689
Impervious Total	34.337
Basin Total	62.299

Element Flow Componants: Surface Interflow Componant Flows To: Detention Basin Detention Basin

Groundwater

224051 Leung BAHM September 2024

10/4/2024 11:33:18 AM

DMA3 Bypass:	No
GroundWater:	No
Pervious Land Use C D,Grass,Ste(10-20)	acre 38.311473
Pervious Total	38.311473
Impervious Land Use	acre
Impervious Total	0
Basin Total	38.311473

Element Flow Componants: Surface Interflow Componant Flows To: POC 2 POC 2

Groundwater

224051 Leung BAHM September 2024

10/4/2024 11:33:18 AM

Routing Elements Pre-Project Routing

224051 Leung BAHM September 2024

10/4/2024 11:33:18 AM

Mitigated Routing

Detention Basin

Depth: 222 ft. Element Outlets: Outlet 1 Outlet 2 Outlet Flows To: Surface ention Basin

SSD Table Hydraulic Table

Stage	Area	Volume					
(feet)	(ac.)	(ac-ft.)	Manual	Manual	NotUsed	NotUsed	NotUsed
215.5	1.297	0.000	0.000	0.000	0.000	0.000	0.000
216.0	1.339	0.659	0.412	0.000	0.000	0.000	0.000
217.0	1.687	2.172	0.606	0.000	0.000	0.000	0.000
218.0	1.789	3.910	0.751	0.000	0.000	0.000	0.000
218.3	1.815	4.361	0.784	0.000	0.000	0.000	0.000
218.5	1.841	4.818	0.814	1.500	0.000	0.000	0.000
219.0	1.894	5.752	0.873	7.794	0.000	0.000	0.000
219.5	1.947	6.712	0.928	16.77	0.000	0.000	0.000
220.0	2.001	7.699	0.980	27.78	0.000	0.000	0.000
220.5	2.055	8.713	1.029	40.50	0.000	0.000	0.000
221.0	2.110	9.754	1.076	54.72	0.000	0.000	0.000
221.5	2.165	10.82	1.121	70.31	0.000	0.000	0.000
222.0	2.221	11.92	1.164	87.14	0.000	0.000	0.000

224051 Leung BAHM September 2024

10/4/2024 11:33:19 AM

Bottom Length:169.00 ft.Bottom Width:100.00 ft.Material thickness of first layer:1.5Material type for first layer:BAHM 5Material thickness of second layer:1Material thickness of second layer:1Material thickness of second layer:0Material thickness of third layer:0Material type for third layer:0Material type for third layer:0Underdrain used1Underdrain Diameter (feet):1Orifice Diameter (in.):4.875Offset (in.):0
Material thickness of first layer:1.5Material type for first layer:BAHM 5Material thickness of second layer:1Material type for second layer:GRAVELMaterial thickness of third layer:0Material type for third layer:0Underdrain usedUnderdrain Diameter (feet):Orifice Diameter (in.):4.875Offset (in.):0
Material type for first layer:BAHM 5Material thickness of second layer:1Material type for second layer:GRAVELMaterial thickness of third layer:0Material type for third layer:0Underdrain usedUnderdrain Diameter (feet):Orifice Diameter (in.):4.875Offset (in.):0
Material thickness of second layer:1Material type for second layer:GRAVELMaterial thickness of third layer:0Material type for third layer:GRAVELUnderdrain usedGRAVELUnderdrain Diameter (feet):1Orifice Diameter (in.):4.875Offset (in.):0
Material type for second layer:GRAVELMaterial thickness of third layer:0Material type for third layer:0Underdrain usedGRAVELUnderdrain Diameter (feet):1Orifice Diameter (in.):4.875Offset (in.):0
Material thickness of third layer:0Material type for third layer:GRAVELUnderdrain used1Orifice Diameter (in.):4.875Offset (in.):0
Material type for third layer:GRAVELUnderdrain used1Underdrain Diameter (feet):1Orifice Diameter (in.):4.875Offset (in.):0
Underdrain used Underdrain Diameter (feet): 1 Orifice Diameter (in.): 4.875 Offset (in.): 0
Underdrain Diameter (feet):1Orifice Diameter (in.):4.875Offset (in.):0
Orifice Diameter (in.): 4.875 Offset (in.): 0
Offset (in.): 0
Flow Through Underdrain (ac-ft.): 2014.724
Flow Through Underdrain (ac-ft.): 2014.724 Total Outflow (ac-ft.): 2036.881
Percent Through Underdrain: 98.91
Discharge Structure
Riser Height: 3 ft.
Riser Diameter: 36 in.
Orifice 1 Diameter: 8.000 in. Elevation: 1 ft.
Element Outlets:
Outlet 1 Outlet 2
Outlet Flows To:

Bioretention Hydraulic Table

Stage(feet) 0.0000 0.1044 0.2088 0.3132 0.4176 0.5220 0.6264 0.7308 0.8352 0.9396 1.0440 1.1484 1.2527 1.3571 1.4615 1.5659 1.6703 1.7747 1.8791 1.9835 2.0879	Area(ac.) 0.3880 0.380 0.	Volume(ac-ft.) 0.0000 0.0154 0.0308 0.0462 0.0616 0.0770 0.0923 0.1077 0.1231 0.1385 0.1539 0.1693 0.1693 0.1847 0.2001 0.2155 0.2323 0.2491 0.2659 0.2827 0.2995 0.3163	Discharge(cfs) 0.0000 0.0000 0.0000 0.0767 0.1180 0.1613 0.2204 0.2663 0.3051 0.3395 0.3705 0.3992 0.4259 0.4510 0.4747 0.4974 0.5190 0.5399 0.5599 0.5793	Infilt(cfs) 0.0000
1.8791 1.9835 2.0879 2.1923 2.2967 2.4011 2.5000	0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880 0.3880	0.2827 0.2995	0.5399 0.5599	0.0000 0.0000

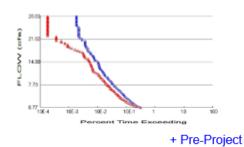
Stage(feet)Area(ac.)Volume(ac-ft.)Discharge(cfs)To Amended(cfs)Infilt(cfs) 2.5000 0.3880 0.3827 0.0000 1.9560 0.0000

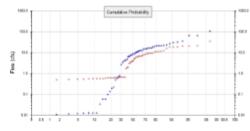
224051 Leung BAHM September 2024

10/4/2024 11:33:19 AM

2.6044 2.7088 2.8132 2.9176 3.0220 3.1264 3.2308 3.3352 3.4396 3.5440 3.6484 3.7527 3.9615 4.0703 4.2747 4.3791 4.4835 4.6923 4.7967 4.9015 5.0055 5.2743 5.2755 5.6319 5.7363 5.8407 5.9451 5.6319 5.7363 5.8407 5.9451 5.6319 5.7363 5.8407 5.9451 5.63626 6.1538 6.2582 6.3626 6.4670 6.5714 6.6758 6.7802 6.8846 7.0934 7.1978 7.3022 7.4066	0.3931 0.3983 0.4036 0.4089 0.4142 0.4142 0.4303 0.4357 0.4411 0.4466 0.4522 0.4577 0.4633 0.4689 0.4746 0.4803 0.4803 0.4803 0.4804 0.4917 0.5033 0.5092 0.5151 0.5269 0.5329 0.52510 0.5269 0.5329 0.55710 0.52694 0.55710 0.52694 0.55756 0.5818 0.5818 0.5844 0.5944 0.5756 0.5818 0.5818 0.5844 0.5944 0.5756 0.5818 0.5818 0.5844 0.5944 0.5944 0.5944 0.6007 0.6071 0.6135 0.6199 0.6263 0.6328 0.6328 0.6328 0.6328 0.6459 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6525 0.6591 0.6591 0.6595 0.6595 0.6591 0.6595 0.6595 0.6591 0.6595 0.6595 0.6591 0.6595	0.4234 0.4648 0.5066 0.5920 0.6355 0.6796 0.7242 0.7694 0.8152 0.9084 0.9559 1.0040 1.0527 1.1019 1.1518 1.2022 1.3049 1.3571 1.4100 1.45175 1.5722 1.6275 1.6835 1.7400 1.7972 1.8551 1.9727 2.0325 2.0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3641 0.6689 0.8731 1.0379 1.3065 1.4219 1.5287 1.6284 1.7224 1.8115 1.8964 1.9777 2.0558 2.1310 2.2036 2.2739 2.3422 2.4084 2.6180 4.0587 6.2408 8.9324 11.994 15,300 18.720 22.125 25,384 28.377 31.008 33.213 34.980 36.358 37.484 39.074 40.275 41.441 42.574	1.9560 2.2283 2.3644 2.5066 2.6367 2.7728 2.9090 3.0451 3.1812 3.3174 3.4535 3.5896 3.7258 3.8619 3.9980 4.1342 4.2703 4.4064 4.5426 4.6787 4.8148 4.9510 5.0871 5.2232 5.3594 5.4955 5.6316 5.7678 5.9039 6.0400 6.1762 6.3123 6.4484 6.5846 6.7207 6.8568 6.9930 7.1291 7.1721 7.17	0.0000 0.0000
6.7802 6.8846 6.9890 7.0934 7.1978 7.3022	0.6263 0.6328 0.6393 0.6459 0.6525 0.6591	2.5342 2.6000 2.6664 2.7334 2.8012 2.8697	34.980 36.358 37.484 39.074 40.275 41.441	7.1721 7.1721 7.1721 7.1721 7.1721 7.1721 7.1721	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$

224051 Leung BAHM September 2024


10/4/2024 11:33:19 AM


8.6593 0.7480 8.7637 0.7551 8.8681 0.7622 8.9725 0.7693 9.0769 0.7764 9.1813 0.7836 9.2857 0.7909 9.3901 0.7981 9.4945 0.8054	3.8239 3.9023 3.9815 4.0615 4.1422 4.2236 4.3058 4.3887 4.4724	54.330 55.195 56.047 56.886 57.713 58.528 59.331 60.124 60.907	7.1721 7.1721 7.1721 7.1721 7.1721 7.1721 7.1721 7.1721 7.1721 7.1721	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9.4945 0.8054	4.4724	60.907	7.1721	0.0000
9.5000 0.8058	4.4768	61.679	7.1721	0.0000

224051 Leung BAHM September 2024

10/4/2024 11:33:20 AM

Analysis Results

x Mitigated

Pre-Project Landuse Totals for POC #1 Total Pervious Area: 65.931 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 27.962 Total Impervious Area: 34.337

Flow Frequency Method: Weibull

Flow Frequency Return Periods for Pre-Project. POC #1Return PeriodFlow(cfs)2 year7.74555 year19.86142910 year28.83476725 year66.057157

Flow Frequency Return Periods for Mitigated. POC #1Return PeriodFlow(cfs)2 year3.7929985 year10.84985710 year18.35706725 year20.903538

Annual Peaks

7 different i olaria	•		
Annual Peaks f	or Pre-Project a	nd Mitigated.	POC #1
Year	Pre-Project	Mitigated	
1960	10.341	3.019	
1961	0.133	0.605	
1962	65.569	18.330	
1963	25.801	21.208	
1964	4.717	3.131	
1965	7.411	6.012	
1966	6.427	1.948	
1967	19.011	15.903	
1968	4.274	4.935	
1969	15.076	8.849	
1970	11.753	6.466	
1971	10.895	9.477	
1972	0.058	0.642	
1973	12.210	7.209	

224051 Leung BAHM September 2024

10/4/2024 11:33:20 AM

2000 0.034 0.023 2001 0.219 0.570 2002 7.634 5.637 2003 21.327 18.370 2004 0.098 0.600 2005 12.333 1.717 2006 14.745 10.593 2007 0.013 0.576 2008 0.787 0.642 2009 0.059 0.571 2010 3.782 11.268 2011 6.612 0.636 2012 0.012 0.602 2013 21.247 7.928	2014 0.013 0.608 2015 8.786 9.477 2016 11.986 5.137 2017 16.647 9.051 2018 0.559 6.470 2019 18.285 1.911 2020 0.013 0.492 2021 0.012 0.642 Ranked Annual Peaks Ranked Annual Peaks for Pre-Project and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2000 0.3054 0.32570 2001 0.219 0.570 2002 7.634 5.637 2003 21.327 18.370 2004 0.098 0.600 2005 12.333 1.717 2006 14.745 10.593 2007 0.013 0.576 2008 0.787 0.642 2009 0.059 0.571 2010 3.782 11.268 2011 6.612 0.636 2012 0.012 0.602 2013 21.247 7.928

 Ranked Annual Peaks

 Ranked Annual Peaks for Pre-Project and Mitigated. POC #1

 Rank
 Pre-Project
 Mitigated

 1
 105.0180
 34.1982

 2
 66.8509
 21.2078

 3
 65.5687
 20.7163

 4
 34.8267
 20.1783

 5
 31.7413
 18.5326

 6
 30.3516
 18.3704

224051 Leung BAHM September 2024

10/4/2024 11:35:29 AM

224051 Leung BAHM September 2024

10/4/2024 11:35:29 AM

224051 Leung BAHM September 2024

10/4/2024 11:35:30 AM

Duration Flows The Facility PASSED

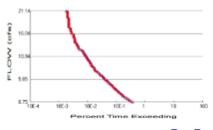
Flow(cfs) 0.7746 1.0580 1.3414 1.6249 1.9083 2.1917 2.4752 2.7586 3.0420 3.3255 3.6089 3.8924 4.7592 4.7427 5.0261 5.3095 5.5930 5.8764 6.1598 6.4433 6.7267 7.0102 7.2936 7.5770 7.8605 8.1439 8.4273 8.7108 8.9942 9.2776 9.5611 9.8445 10.1280 10.4114 10.6948 10.9783 11.2617 11.5451 11.8286 12.1120 12.3954 12.9623 13.2458	Predev 1563 1349 1203 1076 980 892 805 739 682 621 569 518 478 449 422 402 369 341 315 289 269 249 229 213 199 185 177 168 160 148 135 127 121 112 104 97 93 90 85 81 77 67 64 63	$\begin{array}{l} \text{Mit} \\ 1692 \\ 1228 \\ 1029 \\ 851 \\ 734 \\ 638 \\ 562 \\ 513 \\ 456 \\ 405 \\ 335 \\ 312 \\ 269 \\ 250 \\ 227 \\ 212 \\ 199 \\ 178 \\ 162 \\ 142 \\ 125 \\ 102 \\ 97 \\ 91 \\ 84 \\ 781 \\ 69 \\ 60 \\ 59 \\ 53 \\ 40 \\ 397 \\ 376 \\ 35 \end{array}$	Percentag 108 91 85 79 74 71 69 66 65 64 65 63 62 61 62 63 61 62 63 61 62 61 62 61 62 61 62 61 62 61 62 61 62 61 62 61 63 61 62 65 60 61 62 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 65 65 61 62 65 65 61 62 65 65 61 62 65 65 61 62 65 65 61 62 65 65 61 62 65 65 61 55 65 61 55 55 55 55 55 55 55 55 55 55 55 55 55	Pass Pass Pass Pass Pass Pass Pass Pass
11.8286 12.1120 12.3954 12.6789	81 77 72 67 64	40 39 37 37	49 50 51 55	Pass Pass Pass Pass

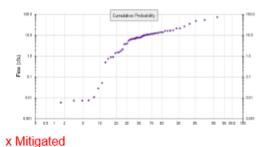
224051 Leung BAHM September 2024

10/4/2024 11:35:30 AM

15.7967 16.0801 16.3636 16.6470 16.9304 17.2139 17.4973 17.7807 18.0642 18.3476 18.6311 18.9145 19.1979 19.4814 19.7648 20.3317 20.6151 20.8985 21.1820 21.4654 20.3317 20.6151 20.8985 21.1820 21.4654 21.7489 22.0323 22.3157 22.5992 22.8826 23.1660 23.4495 23.7329 24.0163 24.2998 24.8667 25.1501 25.4335 25.7170 26.0004 25.4335 25.7170 26.0004 26.2838 26.5673 26.8507 27.1341 27.4176 27.7010 27.9845 28.2679	$\begin{array}{c} 41\\ 40\\ 39\\ 37\\ 42\\ 25\\ 25\\ 22\\ 22\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$	25 21 9 9 8 8 7 6 5 5 5 5 4 4 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	60 52 48 52 55 55 50 44 68 27 22 35 20 21 51 22 45 68 88 88 88 88 88 88 88 88 88 88 88 88	Pass Pass Pass Pass Pass Pass Pass Pass
27.9845 28.2679 28.5513 28.8348		1 1 1	10 10 10 10	Pass Pass Pass Pass

224051 Leung BAHM September 2024


10/4/2024 11:35:30 AM


Water Quality

224051 Leung BAHM September 2024

10/4/2024 11:35:31 AM

Pre-Project Landuse 1	Totals for POC #2
Total Pervious Area:	38.311473
Total Impervious Area	: 0

Mitigated Landuse Totals for POC #2 Total Pervious Area: 38.31147 38.311473 0 Total Impervious Area:

Flow Frequency Method: Weibull

Flow Frequency Return Periods for Pre-Project. POC #2 **Return Period** Flow(cfs) 2 year 7.524656 5 year 13.894376 10 year 21.135367 25 year 40.00004 2 year 5 year 10 year 25 year 49.103224

Flow Frequency Return Periods for Mitigated. POC #2 **Return Period** 2 year 7,524656 7,524656 2 year 5 year 10 year 25 year 13.894376 21.135367

49.103224

Annual Peaks

Annual Pea	ks for Pre-Project	and Mitigated.	POC #2
Year	Pre-Project	Mitigated	
1960	7.476	7.476	
1961	1.514	1.514	
1962	52.425	52.425	
1963	21.193	21.193	
1964	6.508	6.508	
1965	12.645	12.645	
1966	6.130	6.130	
1967	12.469	12.469	
1968	7.933	7.933	
1969	11.410	11.410	
1970	8.513	8.513	
1971	9.833	9.833	
1972	0.741	0.741	
1973	10.243	10.243	
1974	16.156	16.156	

224051 Leung BAHM September 2024

10/4/2024 11:35:31 AM

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Ranked A	7.510 0.005 0.007 15.931 7.744 10.016 3.733 13.825 73.686 7.580 9.865 21.021 6.012 7.540 6.707 3.753 1.786 25.778 34.529 1.372 47.059 6.913 12.178 11.686 0.027 0.495 0.857 13.230 16.755 1.502 10.462 10.965 0.857 13.230 16.755 1.502 10.462 10.965 0.007 2.082 0.913 6.937 5.334 0.011 17.295 0.051 6.588 9.176 10.791 3.995 14.008 0.007 0.006 nnual Peaks	7.510 0.005 0.007 15.931 7.744 10.016 3.733 13.825 73.686 7.580 9.865 21.021 6.012 7.540 6.707 3.753 1.786 25.778 34.329 1.372 47.059 6.913 12.178 11.686 0.027 0.495 0.857 13.230 16.755 1.502 10.462 10.965 0.007 2.082 0.913 6.937 5.334 0.011 17.295 0.051 6.588 9.176 10.791 3.995 14.008 0.007 0.006
---	---	--

 Ranked Annual Peaks

 Ranked Annual Peaks for Pre-Project and Mitigated.
 POC #2

 Rank
 Pre-Project
 Mitigated

 1
 73.6859
 73.6859

 2
 52.4246
 52.4246

 3
 47.0593
 47.0593

 4
 34.5293
 34.5293

 5
 25.7782
 25.7782

 6
 21.1927
 21.0207

224051 Leung BAHM September 2024

10/4/2024 11:37:36 AM

224051 Leung BAHM September 2024

10/4/2024 11:37:36 AM

Duration Flows The Facility PASSED

Flow(cfs) 0.7525 0.9584 1.1642 1.3701 1.5760 1.7819 1.9878 2.1937 2.3996 2.6055 2.8113 3.0172 3.2231 3.4290 3.6349 3.8408 4.0467 4.2526 4.4584 4.6643 4.8702 5.0761 5.2820 5.4879 5.6938 5.8997 6.1056 6.3114 6.5173 6.7232 6.9291 7.1350 7.3409 7.5468 7.7527 7.9585 8.1644 8.3703 8.5762 8.7821 8.9880 9.1939 9.3998 9.6056 9.8115 10.0174 4.02222	Predev 1976 1746 1561 1401 1266 1123 1006 922 849 786 716 660 608 563 516 482 443 411 388 359 326 301 282 260 240 220 204 190 180 164 148 137 128 118 103 100 94 93 86 80 74 73 70 67 66 60 57 66 60 85 80 74 73 70 67 66 60 85 74 73 70 67 66 60 85 74 73 70 67 66 60 85 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 74 73 70 67 66 60 75 75 70 67 66 60 75 75 75 70 67 66 60 75 75 70 67 66 60 75 75 70 67 66 60 75 75 75 70 67 66 60 75 75 75 70 67 66 60 75 75 75 75 75 75 75 75 75 75	Mit 1976 1746 1561 1401 1266 1123 1006 922 849 786 716 660 608 563 516 482 443 411 388 359 326 301 282 260 240 220 204 190 180 168 128 118 103 100 94 93 86 80 74 73 70 67 66 60 57	Percentage 100 100 100 100 100 100 100 100 100 10	Pass Pass Pass Pass Pass Pass Pass Pass
9.3998 9.6056 9.8115	70 67 66	70 67 66	100 100 100	Pass Pass Pass Pass
10.6351 10.8410 11.0469 11.2527	52 51 48 44	52 51 48 44	100 100 100 100	Pass Pass Pass Pass

224051 Leung BAHM September 2024

10/4/2024 11:37:37 AM

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.6645	42	42	100	Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			25		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		31	31		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.8999		26		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.1057		26		Pass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.3116	25	25		
13.92932222100Pass14.13522020100Pass14.34112020100Pass14.54702020100Pass14.75282020100Pass14.95871919100Pass15.16461919100Pass15.37051818100Pass15.7641818100Pass15.98821616100Pass16.19411515100Pass	13.5175	24	24	100	
14.34112020100Pass14.54702020100Pass14.75282020100Pass14.95871919100Pass15.16461919100Pass15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass		23	23		
14.34112020100Pass14.54702020100Pass14.75282020100Pass14.95871919100Pass15.16461919100Pass15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass	13.9293		22		
14.54702020100Pass14.75282020100Pass14.95871919100Pass15.16461919100Pass15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass			20		
14.75282020100Pass14.95871919100Pass15.16461919100Pass15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass			20		
14.95871919100Pass15.16461919100Pass15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass			20		
15.16461919100Pass15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass			20	100	Pass
15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass		19		100	
15.37051818100Pass15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass		19	19		Pass
15.57641818100Pass15.78231818100Pass15.98821616100Pass16.19411515100Pass	15.3705	18	18	100	
15.78231818100Pass15.98821616100Pass16.19411515100Pass	15.5764	18	18		Pass
15.9882 16 16 100 Pass 16.1941 15 15 100 Pass	15.7823	18	18		Pass
16.1941 15 15 100 Pass	15.9882	16	16		
16 3000 15 15 100 Door		15	15		
10.3888 13 13 100 1455	16.3999	15	15	100	Pass
16.6058 15 15 100 Pass		15	15		Pass
16.8117 14 14 100 Pass					
17.0176 14 14 100 Pass					
17.2235 14 14 100 Pass				100	
17.4294 13 13 100 Pass					
17.6353 12 12 100 Pass	17 6353	12	12		
17.8412 12 12 100 Pass	17 8/12	12	12		
18.0470 12 12 100 Pass		12	12		
18.2529 12 12 100 Pass	18 2520	12	12		Dass
18.4588 12 12 100 Pass	18 / 588	12	12		
18.04701212100Pass18.25291212100Pass18.45881212100Pass18.66471212100Pass		12	12		
18.8706 12 12 100 Pass		12	12		
18.8706 12 12 100 Pass 19.0765 12 12 100 Pass		12	12		Doce
19.0705 12 12 100 Pass 19.2824 12 12 100 Pass	10.0700	12	12		Pass
19.2024 12 12 100 Pass 19.4883 12 12 100 Pass		12	12	100	
			12	100	
		11	11		
			11		
20.1059 11 11 100 Pass			11		
20.3118 11 11 100 Pass	20.3118	11	11	100	
20.5177 11 11 100 Pass					
20.7236 11 11 100 Pass			11		
20.9295 11 11 100 Pass					
21.1354 10 10 100 Pass	21.1354	10	10	100	Pass

224051 Leung BAHM September 2024

10/4/2024 11:37:37 AM

Water Quality

224051 Leung BAHM September 2024

10/4/2024 11:37:37 AM

Model Default Modifications


Total of 0 changes have been made.

PERLND Changes No PERLND changes have been made.

IMPLND Changes No IMPLND changes have been made.

224051 Leung BAHM September 2024

10/4/2024 11:37:38 AM

224051 Leung BAHM September 2024 10/4/2024 11:37:38 AM

Mitigated Schematic

DMAs 1, 2, 6 DMA3 62.30ac 38.31ac
SI Detention All Basin
S
Bioretention Basin

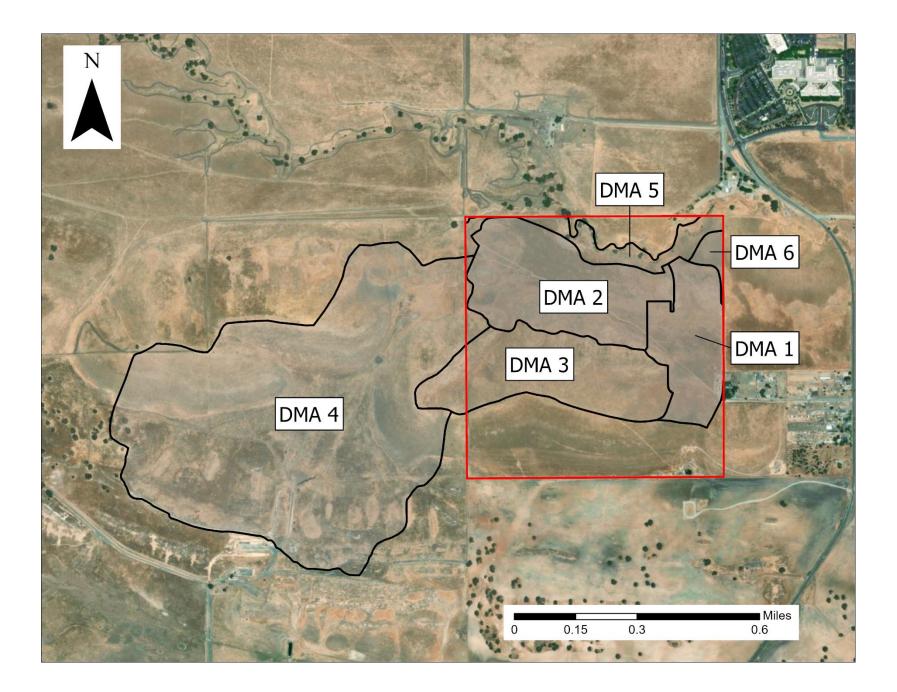
224051 Leung BAHM September 2024

10/4/2024 11:39:59 AM

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc, Applied Marine SciencesIncorporated, the Alameda County Flood Control and Water Conservation District, EOA Incorporated, member agencies of the Alameda Countywide Clean Water Program, member agencies of the San Mateo Countywide Water Pollution Prevention Program or any other LOU Participants or authorized representatives of LOU Participants be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this programeven if Clear Creek Solutions Inc., Applied Marine Sciences Incorporated or any member agencies of the LOU Participants or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.


Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

224051 Leung BAHM September 2024

10/4/2024 11:41:39 AM

Appendix D. Map of DMAs

